第104章 数学不是那么简单……但也不难!
第104章 数学不是那么简单……但也不难! (第1/3页)
张树文犹豫了片刻,然后选择站了起来,走到乔喻的身边,随手将最后的板书擦掉,然后开始了现场讲解。
“Riemann-Roch定理是代数几何中的一个基本定理,用于描述代数曲线上某些函数或形式的维度。具体来说,Riemann-Roch定理适用于代数曲线X上的任意除子D,定理陈述代数曲线上与除子D相关联的函数空间 L(D)的维数。
它的具体陈述就是(D)=deg(D)+1g+(KD)。它有两个部分互为补充,描述了除子D与剩余部分 KD的平衡关系。但有特殊情况,当D的度数足够大时,(KD)为零,所以这种情况下(D)=deg(D)+1g,你明白这代表什么吗?”
“D的度数足够大,维数与度数就是线性关系。”乔喻立刻答道。
“那么当D为零的时候……”
“(0)=1g+(K)……哦,张教授,我明白您的意思了……所以这部分的证明其实可以不用那么繁琐,因为亏格g(X)可以直接通过Riemann-Roch定理得出,咦,那这部分的证明就不那么麻烦了……让我想想……”
说完,乔喻拿起了粉笔,开始在黑板另一边书写。
“也就是说构建函数的时候……嗯,dimQH1(Cp是量子化后的同调群维数,嗯,取决于曲线的亏格g和量子算符 Q……这部分可以通过计算典范因子,得到H1(Cp)的维数……
所以分解后的维数关系直接就是dimQH1(Cp)=gf(Q),张教授,您看这部分的推导这样对不对?”
张树文深吸了口气,让自己表情没有一丝动容,然后点了点头。
“太好了,那下一步就好证明了……推导出同调群的维数后,那么量子化同调群的维数越大,就代表曲线几何复杂性越高,曲线上的有理点个数就会受限,再加上Jacobian又能进一步影响有理点个数……
亏格是最核心的几何不变量之一,不能简化,那么#C(K)≤f(g,Jac(Cp))?呼,不是,这样看的话,我感觉这个方法好像真能把常数C的公式给推导出来啊?”
乔喻下意识的感慨道。
真的,台下的陈卓阳听到乔喻这句话,都懵了。
虽然他同样被乔喻的悟性震撼着,但听到这句话大家真不生气么?
压根没百分百信心证明出来的东西,你还敢接受45分钟的研讨会?
只是看到会议室没人在乎的样子,陈卓阳自然也不可能说什么。
而台上,张教授则是冷哼了一声,说道:“还早呢,我相信你能证明出来,甚至还能得到一个你想要的公式!但是那些真的有用吗?!你最起码得简化到#C(K)≤f(g)这一步才有意义!
引入彼得·舒尔茨的理论是可以的,数学的证明过程只要是框架内的逻辑,多繁复抽象都可以,但你要把所有的复杂性限制在证明的中间步骤!
最终的结果必须要尽量简化!否则的话,你就算证明出来了常数C,并推导出了结果,把那么多设定的常数带入进去,你自己想想最终的公式会有多复杂?其他人怎么去利用?
真正的数学追求的是思维复杂化,结果简洁化,只有简洁的结果才是真正有用且优雅的数学工具!过多的常数或参数只会增加理解和计算的难度,即便研究出来也是垃圾!数学没有你想的那么简单!”
……
张树文语气极为严厉,但田言真坐在那里看上去心情却很愉悦。
罗伯特·格林终于忍不住凑过来问道:“田教授,张教授在跟那个孩子说什么?”
刚刚乔喻在介绍他的想法时用的是英文,但等到张树文上去指点乔喻的时候,已经开始用中文了。
“他教育乔喻不要得意忘形,在告诫孩子他现在提出的只是想法,距离出成果还远,以及数学结论必须简洁化的道理。”田言真笑着解释道。
“哦!上帝呐,张的要求那么严格吗?他难道不知道这个孩子才十五岁?十五岁啊,他竟然真能看懂舒尔茨的理论,还能畅想出如此有创意的想法,张竟然还觉得不够?他是疯了吗?我甚至觉得这的确是一个未来非常值得期待的研究方向。”
罗伯特·格林困惑的说道,显然从这位纽约大学教授的角度看来,张树文太过严厉,对乔喻的要求更是太过苛刻了。
“对,这也是我一定要举办这次研讨会的原因,我也觉得这是一种很值得期待的可能。不过目前这孩子想独立完成这个命题还稍微难了点。所以我其实很感谢张教授,起码他告诉了乔喻在数学层面做减法有时比证明过程本身要难许多的道理。”
田言真嘴角噙着一丝笑意,帮着张树文解释道。
“虽然张说的道理非常正确,但完全不需要用如此严厉的语气,这对一个十五岁的孩子来说并不公平。”
罗伯特·格林依然无法理解,毕竟如果乔喻是他的学生,他绝不可能如此不讲情面。
虽然听不懂张树文说了什么,但他能听出那语气甚至可以说是冷酷的。
“我们华夏有句话叫爱之深,责之切。如果不是特别看好,以他的性格甚至懒得多跟这孩子说一句废话。”
说着,田言真忍不住笑出了声,虽然很压抑:“呵呵,张教授大概在心里惋惜,他没碰到这样的学生吧?其实我还要感谢张教授,本来这些话我下午也想跟这孩子说的,但怕打击到他的积极性。”
罗伯特·格林摇了摇头,华夏人的思维模式太古怪了,他理解无能。自己不指出问题,却感谢别人更为严厉的去指出问题?所以别人去说就不会打击到一个孩子的积极性了?
在他看来,乔喻这样的学生,就应该多鼓励才对,毕竟才十五岁,这样才能激发他对数学的热爱跟自信,而不是批评。
让罗伯特·格林更意外的是,台上那个孩子看不出任何挫败的情绪。还在神色如常的跟张树文对话。
该死的,他听不懂中文。
……
是的,台上乔喻的确没有任何挫败情绪,面对一脸严肃的张树文,也只是认真的说了句:“谢谢张教授,我明白了,是我把问题想的太简单了!
不过我还是坚持我的想法是正确的,并肯定会把这个结果证明出来。而且是在没有设定那么多常数的情况下!”
张树文面容稍霁,点了点头说道:“嗯,数学方面你很有天赋,但如何利用这天赋还在于你自身是否努力,以及选择怎样的数学之路,好自为之。”
说完,他便转身回到了自己的位置上。
此时田言真也已经收起了他刚刚抑制不住的笑容,如往常般沉静的开口道:“大家还有什么想法,都说说吧。乔喻的想法肯定是不够成熟的,大家都帮帮我这个暂时还不太成器的学生。”
随后又侧过头低声跟身边的罗伯特·格林解释了下他的话。
会议室内的气氛也终于开始热闹起来。
正如田言真说得那样,乔喻的想法极有创意,但并不成熟,今天田言真邀请来的教授又大都浸淫代数几何这个方向几十年了,大家可以说的东西还是有的。
当然也包括了从大洋彼岸远道而来的罗伯特·格林。
事实上这位纽约大学的教授是真的非常喜欢乔喻,以至于在会议结束时,他主动说道:“乔喻,你的名字是这样发音,对吗?也许你可以给我留一个联系方式,以后有机会我可以介绍彼得·舒尔茨给你认识。我相信他也非常希望认识你的。
知道为什么吗?因为我觉得你的想法非常有创意,而且非常有价值!哦,对了,明天一定记得还要来参加我的讲座,相信我,接下来还有很多精彩的内容,你一定会有很多收获!”
罗伯特·格林用实际行动表达了自己的态度,当着张树文的面前,大肆的鼓励了乔喻一番。
“非常感谢你,罗伯特教授,事实上你今天的讲座就给了我很多帮助,我非常喜欢读您的论文真的。我这些想法,都是看了你的论文之后才从脑子里蹦出来的!”
乔喻如是回答道,也让远道而来的罗伯特教授喜笑颜开。
在用加工过的大实话哄人开心这块,乔喻甚至比他的数学天赋要更专精,当然是在他愿意的前提下。
……
“我去送送两位教授,你先去楼上301办公室等我,门没锁,桌上的东西你别乱动,不过书柜里的书你可以随便看。”
研讨会结束之后,田言真交代了乔喻一句,这才大步流星的走出会议室,追上了罗伯特·格林跟张树文两人。
那精神头很难看出田导已经是位年近七十的人。
乔喻看了眼薛松,问道:“薛老师,你跟我一起去不?”
薛松摇了摇头道:“开什么玩笑?那地方你能去,我没邀请可不敢进去。你去等着吧。”
说完,薛松便收拾好东西扬长而去。
乔喻又看了眼正在做收尾工作的陈师兄……
还是算了,他自己去老师的办公室吧。
陈师兄这人什么都好,就是太严肃了。
感觉到乔喻离开办公室的陈卓阳也终于松了口气,他得仔细想想以后该怎么跟小师弟相处了。必须得承认,第一次跟小师弟见面,他好像说话的声音稍微大了那么一点。
……
另一边,研究中心外,田言真正在送着张树文。
罗伯特·格林就住在距离研究中心步行仅四百多米外的酒店里,婉拒了田言真要送他到酒店的提议,出门就自己走了。主要是大家都太聪明,这老外又很识相,能看出两位华夏同行有话要聊。
“要安排辆车送你吗?”田言真随口问了句。
也不是没话找话,虽然说两所大学距离很近,但校园很大。走路回去总得有个两、三公里。
“不用,走回去挺好,没那么娇贵。”张树文意兴阑珊的答了句。
“嗯,送送你?”
“不必。”
“还是送送吧,到校门口,我就不出去了。”田言真坚持道。
“那就走东门吧。”张树文说道。
“不去湖畔逛逛?下周开学后就热闹了。”
“不了,以后有机会。”
“嗯,好!”
默默的走了两步,田言真突然唏嘘的说道:“哈密尔顿先生去年去世了。”
张树文沉默了片刻,开口道:“嗯,值得尊敬的老先生。你肯定在心里抱怨,死的为什么不是西蒙·唐纳森。”
田言真笑了,说道:“我还没那么刻薄,到了我们这个年纪,很多事情也已经看开了。不过话又说回来,唐纳森今年也69了吧!”
张树文点了点头,道:“是的,我记得他比你大了一岁。”
两人简单几句话,都是曾经数学界的历史。
不管是理查德·哈密尔顿也好,西蒙·唐纳森也好,都是国际知名数学家,尤其是后者,曾经的菲尔兹奖得主,不列颠皇家学院院士、美国国家科学院双院士,
(本章未完,请点击下一页继续阅读)