第五百五十九章 真给跪了

    第五百五十九章 真给跪了 (第3/3页)

吧。」

    「我们这组在技术侧的目的很简单,就是将最小波阻锥导乘波体和内转式进气道完成一体化设计。」

    「而这个设计的核心,就是曲面内锥流场的参数推导。」

    说罢。

    钱五师又从身边取来了几份文件,对徐云说道

    「你看这里,这是我在早些年推导出的乘波体激波面和内锥激波面的部分交线。」

    「其中曲线CD是一段捕获型线,通常交点D位于内转式进气道基准流场的中心体上......」

    众所周知。

    在前体进气道一体化设计方面,眼下这个时期各国的方案有很多种。

    比如李维斯特在锥形流场中用流线追踪法设计出进气道的唇口,来近似匹配二维进气道构型。

    霓虹的高嶋伸欣则用密切锥方法完成了这一步。

    英国的斯达克则采用的是变楔角法——这位其实也挺可惜的,要是英国当年多支持他的研究,英国说不定会先完成乘波前体的研发。

    而钱五师采用的则是最小波阻锥导乘波体的耦合设计,即便在后世也算是相当大胆了。

    没办法。

    如果不另辟蹊径。

    徐云的方案压根就没有落地的可能。

    至于钱五师拿出的这份文件,可不仅仅是早些年那么简单。

    这些文件都是他从海对面提前寄回来的宝贵资料,在当时堪称孤本,珍贵程度难以用语言来形容。

    等到金贝儿背刺举报钱五师,钱五师与妻子被监禁之后,他就再也没法带出或者邮寄任何东西回国了。

    当然了。

    也正是因为

    有这几份在海对面做过的数据,钱五师才会选择和徐云莽这么一波。

    接着很快。

    钱五师画出了一条豁口面的激波型线,并且将交点D位,写到了内转式进气道基准流场的中心体上。

    接着又写下了一个流速公式:

    qA2kk-1p00[(pp0)2k-(pp0)k+1k]

    这是完全气体在一元等熵定常流动下的描述,在1954年就已经被推导出来了。

    写到这里后。

    钱五师的笔尖微微一顿,对徐云道:

    「韩立同志,你觉得接下来应该计算什么?」

    「背压比,还是面积-流速关系?」

    徐云知道这不是自己该客套的时候,因此立刻便表达了自己的看法:

    「钱主任,我个人觉得背压比应该会更好一点儿。」

    上辈子在成飞工作的时候,徐云曾经听一位搞流体的同事说过一件事:

    激波这东西产生之后,熵会增加,但滞止压力却会减小。

    同时呢。

    激波前后的滞止温度不变。

    所以在这种情况下。

    计算面积-流速关系会出现一个只有通过超算才会知道的误区:

    不导入压缩性系数的话,整个公式将会完全报废。

    因此在钱五师询问意见后,徐云立刻提出了自己的看法——如果钱五师不问,徐云就会主动开口。

    而在徐云身边。

    钱五师闻言也点了点头:

    「正合我意。」

    于是很快。

    钱五师便计算起了背压比。

    所谓背压比。

    指的喷嘴出口静压力与喷嘴上游滞止压力之比,不过在设计方案中指的是锥流场与气体的耦合比。

    当锥流场刚好达到临界条件时。

    外部气体达到音速,同时气体质量流量达到最大值,此时的背压比即称为最大背压比。

    这个概念有点类似后世的MBPR,不过释义上更接近下游。

    接着很快。

    徐云也估量了一番自己的右手状态。

    今天他的右手还没用过,负载为0,因此他便也拿起笔和纸协助写了起来。

    众所周知。

    如果激波为正激波,且不考虑激波厚度,那么激波控制体的形状就会很对称:

    你比划个剪刀的手势,然后指尖向下。

    这就是激波控制体的图示了。

    而控制体CV基本方程,则由三个连续方程组成:

    DΦDt=DDt∫Vϕ(r,t)dV=∂∂t∫Vϕ(r,t)dV+∮Sϕ(r,t)u⋅ndA

    ΔN=(∭IIσd+∬IIIσd))t+Δt−(∭IIσpd)t

    lit→0(∭Iσd)t+ΔtΔt=−∬σ⋅V→⋅dA→=∬σs⁡αdA(这排版将就着看吧)

    其中t为时间;

    Fx为控制体内流体的受力在x轴上的分量;

    v为流体速度失量;

    A为控制体表面面积失量;

    V为控制体体积。

    同时考虑气体稳定流动,再假设速度、能量在激波截面上是均匀的。

    便有∫CSv·dAA。

    随后徐云把截面态联立在了一起,准备继续推导下去。

    然而半分钟后。

    徐云忽然眉头一皱,嘴里啧了一声,轻轻摇了头:

    「不行,要是这样

    拟合的话,就没法继续计算了.....」

    结果话音刚落。

    徐云的耳边忽然传来了一道声音:

    「韩立同志,为什么没法继续计算?」

    「?」

    徐云顿时一怔,顺势朝发声者看去。

    转过头后。

    发现数算小组的那位被叫做什么「大于」的圆脸中年人,不知何时已经来到了自己身边。

    徐云见状扫了眼正在低头计算的钱五师,压低声音解释道:

    「大于同志,这不是很明显吗?」

    「激波后的温度高于激波产生前,压力间断性地急剧上升,扩散段的方程显然是算不出来的。」

    说罢。

    徐云便摇了摇头,准备试着思考另一种方法。

    然而令他有些意外的是。

    圆脸中年人闻言后没有再说话,而是同样低头拿着笔和纸写了起来。

    徐云见状也不再说什么,继续做起了思考。

    过了大概三四分钟。

    中年人忽然将算纸递到了徐云面前,说道:

    「韩立同志,你看看这个。」

    徐云这会儿还处在思路断档期,被人反复打搅,心中多少还是有些想法的。

    反感谈不上。

    但不耐烦肯定有点儿。

    毕竟这可是后世的2023年都已经形成定式的准公理,在徐云看来没太多讨论的必要。

    不过出于对这个时代先辈的敬重,徐云还是决定先帮忙这位同志找出问题,给他简单的上上一课。

    结果在看到算纸内容的第一时间。

    徐云便顿时童孔一缩。

    只见此时此刻。

    算纸上赫然写着一段推导:

    【已知d/u=(k+1)Ma2u/2+(k−1)Ma2u】

    【以及y=pd/pu√[2kx2−(k−1)k+1]^1/2】

    【对以上二方程进行联立,建立二维柱坐标下的可压缩粘性气体的连续性方程、N-S方程、能量方程和气体状态方程】

    【通过变式可知,截面态会在扩散段后半段中逐渐增大,引入气体边界层影响后可得最终式......】

    【∑Fv=∂∂tvV→dB+∬→)dA......】

    「??????」

    看着面前的计算结果。

    徐云在内心激烈震动的同时。

    下意识问了一句话:

    「大于同志,你怎么称呼?——我是问你的全名。」

    「你说我啊?」

    名叫大于的圆脸中年人闻言扶了扶眼镜,很是憨厚的笑着说道:

    「我叫于敏.....嗳,韩立同志你怎么摔下去了?」

    ........