第三百零六章 高斯的宝藏(下)(8.4K)
第三百零六章 高斯的宝藏(下)(8.4K) (第1/3页)
“......”
书房内。
看着高斯递到面前的这份全新手稿,徐云的脸上不由冒出了一股好奇。
这里头的内容会是什么?
要知道。
在数学领域里,亲和数属于数论的一个分支。
和它能搭上边的‘亲戚’如果真要一个数,符合条件的例子实在是太多太多了。
比如素数、等和数,孤立数,公和数等等一大堆都是......
甚至你硬要扯的话。
非欧几何都能和数论扯上关系:
因为非欧几何也是一个一阶谓词逻辑与初等数论的形式系统,符合哥德尔不完备定理。
因此单靠高斯的介绍,徐云确实猜不出这份手稿的内容,只能亲自观阅才知道了。
随后他伸出双手,小心的接过手稿。
接着他又想到了什么,停下动作,对高斯问道:
“高斯教授,这份手稿是您给我的,看完算.....”
结果徐云话未说完,高斯便无情的打消了他的念头:
“当然要记入五卷之一。”
徐云只能耸耸肩。
好吧,卡逻辑bug失败。
不过总体上问题不大,毕竟这五卷手稿的机会本身便是个意外之喜。
随后他又打量了一番手稿外部,发现手稿只被一根红丝带绑着,没有看到类似亲和数那种写有大致内容的封条。
见此情形。
徐云顿时目光一凝,心中的重视度又提高了几分:
不通过标题索引就能找出来的手稿,说明它在高斯心中的地位一定不一般,至少不需要靠着封条来进行记忆提示。
想到这里。
徐云解丝带的动作不由快了几分,看上去就像是在解...解鞋带一样。
嗯,解鞋带,不要多想。
小半分钟后。
一卷摊平的稿纸出现了在了徐云面前。
徐云捏着稿纸上半部的两角,像是催更党倒着拎作者似的将其拿起,目光逐行逐字的看了下去。
几秒钟后。
徐云的瞳孔骤然一缩,大惊之下,手中的手稿险些脱手落地!
只见这份稿纸的开头处,赫然便写着一行字:
《有关奇完全数不存在的证明》
这个标题的正确读法是【有关/奇完全数/不存在/的证明】,其中最关键的核心就是中间的两个词:
奇完全数、不存在。
了解数论的同学应该都知道。
这两个词若是同时出现在后世的2022年,注定将会在数学界中引发一场大地震。
早先提及过。
在徐云穿越来的2022年,亲和数在数学界中的地位一直都有些尴尬:
一方面。
亲和数可以通过计算机穷举列出,跟生产线似的比较约数和。
符合条件的输出YES,反之便是NO,一键搞定。
截止到2022年8月15日凌晨3点34分,已经发现的亲和数便超过了11994387对。
其中最长的一对数长达2400多万位——请注意,不是2400万这个数字,而是2400万位,一个亿是九位数。
如果实在不太好理解这个概念,可以把“位”看成一个字。
2400万位数,也就是相当于2400万字的网络。
如果笔者把这个数列出来,咱们这本书的字数立刻就可以窜到前几......
其实这还不算是最离谱的,上一章提到的圆周率才最吓人——它已经被计算到100万亿位了。(感谢读者的指正,我查了一下62万亿记录确实被刷新了,才八个月不到,太快了)
创下这个记录的是谷歌云工程师Emma Haruka Iwao,一位霓虹人。
ta使用了25台谷歌虚拟机,前后花了158天,最后在今年6月份创下了这个记录。
这位也是19年计算出了31.4万亿位圆周率的项目领头人,不过比起ta的成就,这位的取向也相当微妙:
从前面的ta就不难看出,这位大佬是个生理女性、心理男性的女同支持者......
所以徐云有时候还挺纳闷的,这年头有本事的人都喜欢给自己加buff么?
ok,话题再回归原处。
计算机既然可以筛选出这么多位的亲和数,那么为啥还说它尴尬呢?
原因很简单。
那就是亲和数的具体规律依旧没有完全被破解,计算机靠的是穷举法而已。
这种方法这导致了这些亲和数中,又出现了另一部分‘变异’并且未知的数字。
比如说12496。
你将它的约数加起来,会得到14288这个数。
再将14288的约数加起来,会得到15472;
然后持续这个过程。
15472会变成14536.....
14536会变成14264......
14264则会变成.....
12496。
没错。
五次变化之后,正好回到了。
这种数就叫做交际数。
由于它的朋友圈比亲和数...或者说相亲数更广一些,因此也有人叫它海王数。
而除了交际数之外,还有一个数同样特殊到了极致。
那就是完全数,也叫做完美数。
这个数的概念其实很简单:
当你把它们的约数相加,就会得到它们自身。
最小的例子是6。
6的约数是1、2和3,而1+2+3=6。
之后是28,因为28=1+2+4+7+14。
28的下一个完全数是496,再接下来就是一个比较大的跨越,到了8128。
至于再往后嘛......
就越来越荒唐了。
比如8128的下一个完全数是33550336,接下来是8589869056,后脚紧跟着的是137438691328。
再后面那个拖后腿的则是2305843008139952128,看上去跟报身份证似的......
截止到徐云穿越的时候,完全数一共只有51个。
目前已知的最大完全数是在2018年发现的,有49724095位数字,约数多达1115770321个。
它相当于4900万字的,是上面最大亲和数的足足两倍,二者加起来,全网只有《宇宙巨校闪级生》的字数比它两多.....
这其实是个非常令人头皮发麻的事儿:
想想看吧。
它的1115770321个约数,结果加起来竟然恰好等于自身......
所以后世许多人之所以会认为数学中隐藏着宇宙的奥秘,并不是他们为了提高自身行业重视度说出的贴金言论,而是有些数字真的精妙到了极致。
另外,数学这门学科也在哲学角度反映出了宇宙黑暗而又残酷的现实——你不会就是不会,写个解顶多就得一分,神仙都救不了你......
咳咳......
除了约数方面的特性之外,完全数还有两个特殊的地方:
一个是目前发现的所有完全数都和梅森素数一一对应,无一例外。
也就是找到了多少个梅森素数,便有多少个完全数。
如今执行相关计算的是一个叫做GIMPS的项目组,14年的时间里一共找到了10个梅森素数...或者说完美数。
(本章未完,请点击下一页继续阅读)