第四百零五章 温差发电

    第四百零五章 温差发电 (第2/3页)

一会一大堆资料出现在他全息电脑里面。

    温差发电要想提高热电效率,就必须要提高热电材料的  ZT  值,只有ZT值达到或者超过  4,这种技术才具有商用价值。然而,热电效应发现  100  多年过去了,科学家们连  3  都很难达到。

    为什么热电材料的  ZT  值这么难提高?这要从温差发电技术所依赖的物理原理——热电效应本身说起。

    金属或者半导体的内部存在有一定数量的载流子(比如电子或者空穴),而这些载流子的密度会随着温度的变化而出现变化,如果物体的一端温度高,另一端温度低,就会在同一个物体中间出现不同的载流子密度。

    只要可以维持物体两端的温差,就能使载流子持续扩散,从而形成稳定的电压,这便是温差发电的原理。

    而温差发电的效率,取决于热电材料的三个重要的特性:

    第一、塞贝克系数(材料在有温度差的情况下产生电动势的能力),塞贝克系数越高,相同的温差下产生的电动势就越高,意味着能够发出来的电就越多。

    第二、电导率(材料的导电性),电导率越高,电子在材料内部就可以越容易地扩散。

    第三、热导率(材料的导热系数),热导率越高,热量就可以更快速地从热端传递到冷端,从而让温差发电所依赖的温度差消失,电动势也就随之消失。

    显然对于热电材料来说,前两种能力是越强越好,而后一种能力则是越弱越好。

    热电优值系数  ZT,也就是这三个参数的集合:塞贝克系数越高、电导率越高、热导率越低,ZT  值就越高,材料进行温差发电的效率也就越高。

    因此,热电材料的研究,其关键就是如何提高材料的  ZT  值,也就是在实现高的塞贝克系数和电导率的同时,获得低的热导率。

    不过想同时优化这三个参数,是一件十分困难的事情。因为这三种性质是相互关联的,提升一种性质,往往伴随着另一种、甚至两种性质的指标出现削弱。

    一般情况下,提升材料的塞贝克系数,就会降低其电导率。这种三个参数之间相互关联的性质,这使得热电材料的研发一直进展缓慢。

    然而,三种参数“一损俱损、一荣俱荣”的这种关系,也不是完全绝对的。

    这个“利益共同体”也有一个“叛徒”——热导率,更准确地说,是热导率的一部分。材料的热导率包括两个部分,分别是电子热导率和声子热导率。

    其中,前者与电导率息息相关,是“利益共同体”的一分子;但声子热导率,却是在决定热电材料性质的各种参数之中,唯一对  ZT  值里其它所

    (本章未完,请点击下一页继续阅读)